[代數] 解一題方程

看板Math作者時間13年前 (2012/08/03 09:04), 編輯推噓6(602)
留言8則, 6人參與, 最新討論串1/1
解此方程: (x+1/x)^(1/2) + (1-1/x)^(1/2) = x 一個競賽題目,等式左邊有兩個根號的東西相加, 應該有特別的技巧。 卡很久想不出來怎做? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 163.27.119.65

08/03 11:06, , 1F
第一個根號餒內是+還是-?
08/03 11:06, 1F

08/03 13:55, , 2F
+ ;題目沒抄錯
08/03 13:55, 2F

08/03 14:02, , 3F
軟體跑出x=2.46536,
08/03 14:02, 3F
這題應該是題目有錯,難怪算不出來 我看到一樓的提醒:發現題目若改成 (x-1/x)^(1/2) + (1-1/x)^(1/2) = x 答案就對了 答案書上給 (1+√5)/2 和 (1-√5)/2 這題題目有印錯了 一樓的提示是對的 ※ 編輯: handsomecat3 來自: 163.27.119.65 (08/03 14:19)

08/03 14:15, , 4F
初中數學競賽教程 P.58 1.(3) 題目應該是-才對不然
08/03 14:15, 4F

08/03 14:15, , 5F
給的答案不合
08/03 14:15, 5F

08/03 14:17, , 6F
-的話答案就是1.618囉 黃金分割
08/03 14:17, 6F

08/03 14:30, , 7F
答案應該沒有(1-√5)/2,因為兩個根號相加怎麼是負值?
08/03 14:30, 7F

08/03 22:33, , 8F
可以偷偷問一下這題要怎麼算嗎
08/03 22:33, 8F
先推出 (x-1/x)^(1/2) - (1-1/x)^(1/2) = 1-1/x 再將此方程和原來方程兩式相減 就很好算了 ※ 編輯: handsomecat3 來自: 114.42.141.113 (08/04 19:03)
文章代碼(AID): #1G6oEfsq (Math)