[線代] 特徵值為複數時,微分方程的通解

看板Math作者 (sitma)時間13年前 (2012/04/09 21:59), 編輯推噓2(204)
留言6則, 3人參與, 最新討論串1/1
想請教各位版有一題題目,如果有不合板規請告知,我會馬上刪掉 -- -- -- -- | -3 0 0 | | 1 | X'=| 0 3 -2 | X , X(0)= | 1 | | 0 1 1 | | 1 | -- -- -- -- 這是同學問我的題目 , 因為有一段時間沒碰到微方 加上課本不在身邊 所以希望版友們可以提點一下 我解到特徵值為複數後就不知道怎樣往下了 萬分感謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.172.242.25

04/09 22:25, , 1F
帶回去 實部和虛部 洽為兩個線性獨立解
04/09 22:25, 1F

04/09 22:31, , 2F
感謝^^有點知道怎麼做了~那請問是否再去算特稱向量?
04/09 22:31, 2F

04/09 23:19, , 3F
請問可以再說清楚一點嗎 還是不太懂@@
04/09 23:19, 3F

04/10 12:10, , 4F
恩 找完特徵向量 然後 用euler formula展開
04/10 12:10, 4F

04/10 12:10, , 5F
e^{a+bi}=e^a(cosbx+isinbx)
04/10 12:10, 5F

04/10 22:42, , 6F
懂了 謝謝喔^^
04/10 22:42, 6F
文章代碼(AID): #1FWkjBX9 (Math)