[代數] 幾題ring的問題
小弟我在做題目的時候有幾個問題想了好久,請各位大大幫忙> <
1. Identify the following rings:
2
Z[x]/(2x -4, 4x-5) , Z 是整數
其實是有好幾個小題,但是幾乎都是這種類型。
我知道那個東西其實就是 Z[x] / (2x^2 -4) / (4x-5)
(有除完2x^2-4 之後再除4x-5的意思)
但是我不太知道如果不是monic的話該怎麼做....
2. Let a be an element of of a ring R, & let R' be the ring R[x]/(ax-1)
obtained by adjoining an inverse of a to R.
Let α denote the residue of x (the inverse of a in R')
Show that every element β of R' can be written in the form
β=(α^k)b, with b in R
我的問題是: R'=R[α], where α satisfies f(α)=0
書上特別強調f(x)是monic這個條件,而這題的f(x)=ax-1,不是monic
那應該怎麼做呢??
3. describe the ring obtained from the product ring |R ×|R by
inverting the element (2,0)
實在看不懂這題要我做甚麼= ="
感謝各位大大熱心的幫忙 :D
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 125.225.15.229
推
04/04 23:24, , 1F
04/04 23:24, 1F
推
04/04 23:26, , 2F
04/04 23:26, 2F
→
04/04 23:56, , 3F
04/04 23:56, 3F
→
04/04 23:57, , 4F
04/04 23:57, 4F