[微積] Rolle's thm

看板Math作者 (bks)時間13年前 (2012/03/23 13:53), 編輯推噓0(004)
留言4則, 2人參與, 最新討論串1/1
題目是這樣的 Suppose that f and g are differentiable functions and f(x)g'(x)-g(x)f'(x) has no zeros on some intervals I. Assume that there are numbers a and b in I with a<b for which f(a)=f(b)=0 and that f has no zeros in (a,b). Prove that if g(a)≠0 and g(b)≠0, then g has exactly one zero in (a,b). 題目給的hint是:解 h=f/g, 再解 k=g/f h=f/g 這部份我寫這樣 Suppose that g has no zeros in (a,b) and consider h(x)=f(x)/g(x). Since g(x)≠0 in [a,b] => h(x) is conti. on [a,b] and diff. on (a,b) and h(a)=h(b)=0. Therefore by Rolle's thm, ∃c in (a,b) s.t. h'(c)=0 -><- => g has at least one zero in (a,b). 可是第二部分就看不懂提示了, 令 k=g/f 因為 f(a)=f(b)=0, 所以 k 在 a,b 兩點就沒有定義了 要怎麼用 Rolle's thm ? 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.115.221.192 ※ 編輯: bks 來自: 140.115.221.192 (03/23 14:22)

03/23 14:45, , 1F
假設g在(a,b)上有兩相異根c,d(c<d) 對h用rolle's
03/23 14:45, 1F

03/23 14:46, , 2F
試試看 最後會弄出與"f'g-gf'在I上沒有根"矛盾
03/23 14:46, 2F

03/23 14:54, , 3F
打錯了抱歉~~是對k 還有f'g-fg'
03/23 14:54, 3F

03/23 16:58, , 4F
謝謝、我想通了
03/23 16:58, 4F
文章代碼(AID): #1FR0-zel (Math)