[線代] canonical quotient map

看板Math作者 (competition)時間14年前 (2012/02/17 12:22), 編輯推噓1(101)
留言2則, 2人參與, 最新討論串1/1
我想證的是3 而且是從R is onto--->T is onto 我的證法是 如果R是onto 那代表每個z都可以找到v+W s.t. R(v+W)=z 既然可以找到v+W 代表一定能找到一個v在V裡 s.t q(v)=v+W 但是我不知道是否可以這樣證 如果不行 想請教一下板友要怎麼證 謝謝 LetV and Z be vectors paces over a field F, let W be a subspace of V, and let q:V àV/W be the canonical quotient map. Let T : V -à Z be a linear map such that W is contained in ker(T ). Prove the following: 1. There exists a unique linear map R : V/W à Z such that T = Roq (i.e. composition). (Hint: The equation T = Roq tells you how to define R. Check that this definition is ‘well-defined’ and gives a linear map with the desired property. Then show any other linear map with this property must be R.) 3. The map R from part(1)is onto if and only if T is onto. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 128.97.245.124

02/17 19:28, , 1F
可以
02/17 19:28, 1F

02/17 19:56, , 2F
謝謝
02/17 19:56, 2F
文章代碼(AID): #1FFTO4TZ (Math)