[線代] 對角化性質的證明
我想請問在Frideberg的Thm5.9的證明問題:
A liner operator T on a finite-dimensional VS V is diagonalizable iff
the mutiplicity of λ(i) is equal to dim(E(i)) for all i.
For each i,E(i) is the eigenspace corresponding to λ(i),
where λ(i) are distinct eigenvalue, 1≦i≦k
而證明的過程是先假設這個linear operator T是diagonalizable的,
並令一個β是由T的eigenvector所組成,一個V的basis,
再來定義一個β(i)=β∩E(i),並且令n(i)表示β(i)中的向量數目.
接下來的這個不等式就是我的問題:
n(i)≦dim(E(i)) for each i because β(i) is a LID subset of a subspace
with dimension dim(E(i))
後面我先省略不打了,如果覺得這樣不完整沒辦法判斷我再補打~
我想請問的是,β是由T的eigenvector所組成,那E(i)的basis中的向量難道不會通通包含在
β之中嗎?如果包含在其中,那麼β(i)就應該等於E(i),則n(i)≦dim(E(i))中的等式就成
立了,因此我想知道,"n(i)<dim(E(i))"是在什麼情形下發生~
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.163.2.124
推
02/13 11:34, , 1F
02/13 11:34, 1F
→
02/13 11:35, , 2F
02/13 11:35, 2F
推
02/13 11:38, , 3F
02/13 11:38, 3F
→
02/13 11:38, , 4F
02/13 11:38, 4F
→
02/13 11:39, , 5F
02/13 11:39, 5F
→
02/13 19:24, , 6F
02/13 19:24, 6F
→
02/13 19:25, , 7F
02/13 19:25, 7F
→
02/13 19:25, , 8F
02/13 19:25, 8F
→
02/13 19:26, , 9F
02/13 19:26, 9F
推
02/14 01:09, , 10F
02/14 01:09, 10F