[代數] 子群的定義

看板Math作者 ( )時間14年前 (2012/01/18 10:31), 編輯推噓0(002)
留言2則, 2人參與, 最新討論串1/1
想請問一下以下的敘述為什麼有瑕疵 ? 44. Find the flaw in the following argument: "Condition 2 of Theorem 5.14 is redundant, since it can be derived from 1 and 3, for let a \in H. Then a^{-1} \in H by 3, and by 1, aa^{-1} = e is an element of H, proving 2." (Theorem 5.14: A subset H of a group G is a subgroup of G if and only if 1. H is closed under the binary operation of G, 2. the identity element e of G is in H, 3. for all a \in H it is true that a^{-1} in H also. ) 這本書中子群的定義是 G 的子集 H 必須要是一個群, 且 H 上的二元運算 * 必須是 G 的二元運算 * 的 induced operation. 謝謝! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.217.34.44 ※ 編輯: suhorng 來自: 61.217.34.44 (01/18 10:32)

01/18 10:39, , 1F
條件2是要求H要非空. 若H中沒有元素就無法操作了.
01/18 10:39, 1F

01/18 10:41, , 2F
原來如此!!感謝!!!
01/18 10:41, 2F
文章代碼(AID): #1F5YyU0I (Math)