[代數] equivalence relation
If a group G is even order, show that there is a g belongs to G
and g≠e(identity element) s.t. g^2=e
其實是在解這一題時解答用了等價關係
"a~b" 定義成 "a是b的反元素"
可是這樣"a~a"不就不一定成立嗎?
覺得怪怪的所以PO上來問
參考圖片:
http://ppt.cc/IQPJ
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.24.183.53
推
01/11 17:29, , 1F
01/11 17:29, 1F
→
01/11 17:29, , 2F
01/11 17:29, 2F
→
01/11 17:34, , 3F
01/11 17:34, 3F
→
01/11 17:34, , 4F
01/11 17:34, 4F
→
01/11 17:35, , 5F
01/11 17:35, 5F
→
01/11 17:42, , 6F
01/11 17:42, 6F
推
01/11 18:50, , 7F
01/11 18:50, 7F
→
01/11 22:28, , 8F
01/11 22:28, 8F
→
01/11 22:32, , 9F
01/11 22:32, 9F
推
01/11 22:42, , 10F
01/11 22:42, 10F
難怪放在easier problems Orz...
→
01/11 22:45, , 11F
01/11 22:45, 11F
感謝大家熱情回應
我打一下empty大講的證法
好像寫得很不嚴謹
不過還是希望大家幫我看一下對不對
If there is no g such that g^2=e
i.e. g is not an inverse of itselfs (for all g≠e)
then we can write G={e,g_1,(g_1)^(-1),g_2,(g_2)^(-1),...
,g_k,(g_k)^(-1)} for some k is a positive integer <-- Is it OK?
=>|G| is odd
※ 編輯: cxcxvv 來自: 114.24.183.53 (01/11 23:28)
→
01/11 23:29, , 12F
01/11 23:29, 12F