Re: [代數] subgroup of a finite group

看板Math作者 (小展)時間14年前 (2011/12/10 19:42), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
※ 引述《wsx02 ()》之銘言: : If H is a subgroup of a finite group G, then for any a,b in G : |aH| = |H| : 請問這個要怎麼證? : 謝謝 For every element h of H, define a map f:H->aH by f(h)=ah. Then check f is a bijective map: (1-1) Let h and h' be elements of H. Assume that f(h)=f(h'). Then we have -1 -1 -1 -1 h=a (ah)=a f(h)=a f(h')=a (ah')=h', so f is injective. (onto) Let x be an element of aH. By the definition of aH, there is an element, say y, of H such that x=ay. Then we have f(y)=ay=x, and so f is surjective. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.120.236.73
文章代碼(AID): #1EuqMZt5 (Math)