[線代] 一題證明題

看板Math作者 (電磁霸主)時間14年前 (2011/11/17 14:58), 編輯推噓2(201)
留言3則, 2人參與, 最新討論串1/1
n Let T be a linear operator from C to itself and λ屬於 C . Let N(T) denote n the null space of T. Prove that for every basis of C with respect to which T has an upper-triangular matrix, λ appears on the diagonal of the matrix n of T precisely dim N((T-λI) ) times, or disprove it by giving a counter example. 完全不知道從何下筆... ~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.249.147.90

11/17 15:08, , 1F
應該是對的 而且你是不是忘了說λ是eig value?
11/17 15:08, 1F

11/17 15:09, , 2F
對角線元素應該和 jordan form 的一樣 然後 by def
11/17 15:09, 2F

11/17 17:41, , 3F
上三角出現在對角線的就是特徵值了
11/17 17:41, 3F
文章代碼(AID): #1EnB27jb (Math)