[複變]積分問題
The function f(z) is analytic in the region |z|>3 and its modulus is bounded
by |f(z)| < M|z| in that region, for some positive real number M. Use the
Cauchy's theorem and integral bounds to prove the
\int f(z) / [(z+6)^2 (z-2i)^2] dz =0
|z|=7
----
嘗試用 |f(z)| < M|z| 的條件把分子 替換成 M |z|
然後可以用Cauchy integrl formula去計算 Residue at -6 跟2i
但是現在含有|z| 項 就不知道如何算Residue了,
可是如果不替換 f(z) 在那邊也動彈不得...
還有|z|<3 需要考慮嗎? 萬一 裡面有singularity 怎辦?
這個積分還會是0?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 68.48.173.107
→
11/07 12:45, , 1F
11/07 12:45, 1F
→
11/07 12:46, , 2F
11/07 12:46, 2F
→
11/07 12:48, , 3F
11/07 12:48, 3F
→
11/07 12:48, , 4F
11/07 12:48, 4F
→
11/07 13:19, , 5F
11/07 13:19, 5F