[分析] Thm 2.33, Rudin,有關compact
[Thm 2.33] Suppose K⊂Y⊂X. Then K is compact relative to X if and only if
K is compact relative to Y.
<pf> Suppose K is compact relative to X, and let {V_α} be a collection of
sets, open relative to Y, such that K⊂∪V. (下略)
想請問這件事一定做得到嗎?
根據compact的定義,我只知道所有包含K的(在X裡面的)open covering當中,
有一個有限的(在X裡面的)子covering會包含K。
但是K在Y裡面會有什麼表現,應該什麼都不知道吧?
這也是這個定理要證的,不是嗎?
上面上了色的這句話是從哪個定理來的呢?
後半段的證明也一樣:
Conversely, suppose K is compact relative to Y, let {G_α} be a
collection of open subsets of X which covers K, ...(下略)
這件事為什麼可以做到?
雖然在Y裡面存在一個有限的open covering包含K,
但在Y裡面open,可不見得在X裡面open啊。
那麼那些G_α要上哪兒找去?
感謝回答!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.166.179.39
→
09/27 20:05, , 1F
09/27 20:05, 1F
→
09/27 20:10, , 2F
09/27 20:10, 2F
→
09/27 20:15, , 3F
09/27 20:15, 3F
→
09/27 20:16, , 4F
09/27 20:16, 4F
→
09/27 21:50, , 5F
09/27 21:50, 5F
→
09/28 22:55, , 6F
09/28 22:55, 6F