[線代] 矩陣PX=X,已知起始狀態,求極限(stead …

看板Math作者 (Ethan)時間14年前 (2011/07/06 16:09), 編輯推噓1(101)
留言2則, 2人參與, 最新討論串1/1
已知一矩陣P = [0.7 0.15 0.15; 0.2 0.8 0.15; 0.1 0.05 0.7] ( ;代表下一列 ) P的每一欄之和都為1 pij: 代表每一期由j狀態移動至i狀態的機率 已知欄矩陣 X0 = [15000; 20000; 65000] xij: i代表處於狀態I的人口數; j=1 P X0 = X1 X1: 代表下一期各狀態的人口分布 繼續下去會趨近一 X*使得 P X* = X* 請教要如何求算 X* 呢? --- 直覺上好像與eigenvector 有關? 用eigenvalue(入)=1得eigenvector=[1.75t; 2.5t; t] 接下來便不知道要怎麼處理了.. --- 請教要如何求算X*, 感謝! :] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.7.214 ※ 編輯: ethan0221 來自: 140.112.7.214 (07/06 16:21)

07/06 17:05, , 1F
對角化
07/06 17:05, 1F

07/06 18:44, , 2F
λ=1,0.65,0.55 只有λ=1特徵向量上的分量會留下來
07/06 18:44, 2F
文章代碼(AID): #1E51XH5y (Math)