Re: [中學] 求生成函數 初始值a_{0}=1 a_{k}=3a_{k …

看板Math作者 (遊魂)時間14年前 (2011/06/21 23:42), 編輯推噓1(101)
留言2則, 2人參與, 最新討論串1/1
※ 引述《MinusHeart (ICRT)》之銘言: : 求生成函數 初始值a_{0}=1 a_{k}=3a_{k-1}+2 : 答案為 a_{k}=2*3^k-1 Standard procedure for solving linear recurrences using generating function: inf Let f(x)= sigma a_n x^n n=0 From recurrence relation we have f(x)-3x*f(x)=1+2x+2x^2+.....=2/(1-x) - 1 =(1+x)/(1-x) Hence f(x)= (1+x)/(1-x)(1-3x) inf inf By partial fraction f(x)= 2/(1-3x) - 1/(1-x) = sigma 2*3^n x^n - sigma x^n n=0 n=0 inf = sigma (2*3^n - 1) x^n n=0 Thus a_n = 2*3^n - 1 QED -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 211.74.216.192

06/21 23:54, , 1F
06/21 23:54, 1F

06/22 00:22, , 2F
感謝解答 此版好多高手!!
06/22 00:22, 2F
文章代碼(AID): #1E0BlY4p (Math)