[代數] modules Galois

看板Math作者 (景)時間14年前 (2011/06/14 15:01), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
1.prove that minimal polynomial of Anxn over F(characteristic zero) and the characteristic polynomial have the same set of irreducible factors. 2.let f:Z^3->Z^3 be the homomorphism of free Z-module Z^3 to itself given by multiplication of the matrix B.show that f(Z^3) is a free Z-moduke of rank 2. B= (1 2 3) (2 3 4) (3 4 5) 3.compute the Galois group of the polynomial (x^2+1)(x^3-x^2-2x+1) over Q. 4.let f<Q[x] irr poly, deg(f)=4,show that if its Galois group is C4,then its discriminant must be a positive nonsquare rational munber. thanks -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.152.70
文章代碼(AID): #1DzmSiOv (Math)