Re: [微積] 一題證明

看板Math作者 (steve)時間14年前 (2011/06/05 16:21), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串3/14 (看更多)
pi x pi pi x ∫x f(sinx) dx = x∫ f(sin t)dt | - ∫ ∫f(sint)dt dx 0 0 0 0 0 pi pi x = pi*∫ f(sin t)dt - ∫ ∫f(sint) dt dx 0 0 0 pi pi t = pi*∫ f(sin x)dx - ∫ ∫ f(sint) dx dt 0 0 0 pi pi = pi*∫ f(sin x)dx - ∫ t f(sin t)dt 0 0 pi pi =pi*∫ f(sinx)dx - ∫ xf(sinx)dx 0 0 pi pi => 2∫xf(sinx)dx = pi∫f(sinx)dx 0 0 pi pi => ∫xf(sinx)dx = pi/2 *∫f(sinx)dx 0 0 以上 ※ 引述《young11539 (〝☆小小霈★”)》之銘言: : if f(x) conti. on [0,1] : then show that : ∫xf(sinx)dx = (π/2)∫f(sinx)dx : 積分範圍 [0,π] : 感激不盡 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.34.202.142

06/05 18:17, , 1F
謝謝
06/05 18:17, 1F
文章代碼(AID): #1DwpoU8l (Math)
討論串 (同標題文章)
文章代碼(AID): #1DwpoU8l (Math)