[代數] 2題有關module的問題

看板Math作者 (AUTHOR)時間14年前 (2011/05/21 20:18), 編輯推噓3(304)
留言7則, 1人參與, 最新討論串1/1
1. Prove that a ring R having the property that every finitely generated R-module is free is either a field or the zero ring. 2. A module is called simple if it is not the zero module and if it has no proper submodule. (a) Prove that any simple R-module is isomorphic to an R module of the form R/M, where M is a maximal ideal. (b) Prove Schur's lemma: let Φ: S→S be a homomophism of simple modules. Then Φ is either zero, or an isomorphism. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.7.214

05/21 20:40, , 1F
哈 是同班的厚
05/21 20:40, 1F

05/21 20:41, , 2F
第一題考慮<a> a不為零則等於R maximal部分是trivial
05/21 20:41, 2F

05/21 20:42, , 3F
field就是不會有nontrivial proper ideal
05/21 20:42, 3F

05/21 20:43, , 4F
第二題的第一小題用correspondence Thm做
05/21 20:43, 4F

05/21 20:45, , 5F
第二小題考慮ker等於{0}和等於S的狀況 然後再討論im
05/21 20:45, 5F

05/21 20:52, , 6F
第二題的(a)因為S是simple 所以submodule <a>=R
05/21 20:52, 6F

05/21 20:53, , 7F
做homo從R到S 1->a 在考慮ker
05/21 20:53, 7F
文章代碼(AID): #1DrwsNrQ (Math)