[微積] 兩個函數在無窮大處比大小
我記得是不是有這麼一回事:
f(x+1)/f(x) > g(x+1)/g(x) | x ---> infinity, f(x), g(x) >0 for all x
→ f(x) > g(x) | x ---> infinity
還是其實根本沒有?
那有類似的嗎?
因為我用這個證出了一個錯誤的結論..
n^(1+1/n)^k < n+1 | n ---> infinity, k<1
→ (1+1/n)^k < log(n, n+1) | n ---> infinity, k<1
→ (n+1)^k / n^k < log(a, n+1)/log(a, n) | n ---> infinity, k<1, a>1
→ n^k < log(a, n) | n ---> infinity, k<1, a>1
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.18.212
推
04/22 20:46, , 1F
04/22 20:46, 1F
→
04/22 22:31, , 2F
04/22 22:31, 2F
推
04/22 22:47, , 3F
04/22 22:47, 3F
→
04/22 22:47, , 4F
04/22 22:47, 4F
→
04/22 22:47, , 5F
04/22 22:47, 5F
推
04/23 08:41, , 6F
04/23 08:41, 6F