[分析]Euler Formula 當z是複數的證法
一開始是令z=x+iy x,y是實函數
左式就變成exp(ix)*exp(-y)
根據Euler formula 在x是實數的結果
= [ cos(x)+isin(x)]*exp(-y)
右式用三角公式整理後變 [ cos(x)+isin(x) ] * [ cos(iy)+isin(iy) ]
到這裡就卡住了
要如何證明exp(-y)=cos(iy)+isin(iy) 呢??
抱歉有些文字可能不怎嚴謹或清楚
請各位大大多多包涵Q___Q
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.122.60
推
04/13 12:27, , 1F
04/13 12:27, 1F
→
04/13 12:28, , 2F
04/13 12:28, 2F
→
04/13 13:28, , 3F
04/13 13:28, 3F
→
04/13 22:02, , 4F
04/13 22:02, 4F
→
04/13 22:04, , 5F
04/13 22:04, 5F