[線代] 這一題行列式值的題目
Let x and y be vectors in R^n n>1. Show that if A=xy^T then det(A)=0
解答是這樣的:If A = xy^T then all of the rows of A are multiples of y^T .
It follows that if U is any row echelon form of A then U
can have at most one nonzero row. Since A is row equivalent to U and
det(U) = 0, it follows that det(A) = 0.
-------------------------------------------------------------
我是知道xy^T是怎麼樣的東西
但是我不知道為什麼會忽然的扯到了U 然後A和U列同價 所以行列式值一樣
有請版上的大大幫忙解惑一下了
謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.116.117.15
→
02/14 18:13, , 1F
02/14 18:13, 1F
→
02/14 18:14, , 2F
02/14 18:14, 2F
→
02/14 20:06, , 3F
02/14 20:06, 3F