[線代] 這一題行列式值的題目

看板Math作者 (Aesthetic)時間15年前 (2011/02/14 17:39), 編輯推噓0(003)
留言3則, 2人參與, 最新討論串1/1
Let x and y be vectors in R^n n>1. Show that if A=xy^T then det(A)=0 解答是這樣的:If A = xy^T then all of the rows of A are multiples of y^T . It follows that if U is any row echelon form of A then U can have at most one nonzero row. Since A is row equivalent to U and det(U) = 0, it follows that det(A) = 0. ------------------------------------------------------------- 我是知道xy^T是怎麼樣的東西 但是我不知道為什麼會忽然的扯到了U 然後A和U列同價 所以行列式值一樣 有請版上的大大幫忙解惑一下了 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.116.117.15

02/14 18:13, , 1F
你把x=[x1 ... xn]^t y=[y1 ... yn]^t帶進去就知道了
02/14 18:13, 1F

02/14 18:14, , 2F
每一列都會是第一列的倍數
02/14 18:14, 2F

02/14 20:06, , 3F
懂了懂了 謝謝您
02/14 20:06, 3F
文章代碼(AID): #1DMFWxdl (Math)