[代數] eigenvector
做考古題做到的ㄧ題,做幾行就寫完了感覺不太符合配分
所以想上來請教一下
1.Let S and T be linear transformations on a finit-dimensional vector
space over C.Suppose ST=TS.Show that they have a common eigenvector.
2.(p-1)!≡p-1 mod(1+2+...+p-1) if p is a prime number.
第一題我的解法是:假設x=\=0 是S的ㄧ個eigenvector,而λ是相對應
的eigenvalue
所以ST(x)=TS(x)=T(λx)=λT(x)
=〉T(x)也是一個相對應λ的eigenvector,所以T(x)=ax,where x屬於R
所以x就是S,T共同的eigenvector.
不知道是不是哪裡有盲點,這樣解的話,對所有的eigenvector都對吧
所以想請幫忙看一下是不是哪裡解錯了
而第二題不知道怎麼解,所以想請教一下
感謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.166.226.69
→
02/09 22:23, , 1F
02/09 22:23, 1F
→
02/09 22:28, , 2F
02/09 22:28, 2F
→
02/09 22:28, , 3F
02/09 22:28, 3F
→
02/09 22:30, , 4F
02/09 22:30, 4F
→
02/09 22:31, , 5F
02/09 22:31, 5F
→
02/09 22:32, , 6F
02/09 22:32, 6F
→
02/09 22:32, , 7F
02/09 22:32, 7F
→
02/09 22:37, , 8F
02/09 22:37, 8F
→
02/09 22:38, , 9F
02/09 22:38, 9F
→
02/09 22:39, , 10F
02/09 22:39, 10F
→
02/09 22:39, , 11F
02/09 22:39, 11F
→
02/09 22:49, , 12F
02/09 22:49, 12F
→
02/09 22:50, , 13F
02/09 22:50, 13F
→
02/09 22:50, , 14F
02/09 22:50, 14F
→
02/09 22:51, , 15F
02/09 22:51, 15F
→
02/09 22:52, , 16F
02/09 22:52, 16F
→
02/09 22:53, , 17F
02/09 22:53, 17F
→
02/09 22:55, , 18F
02/09 22:55, 18F
→
02/09 22:56, , 19F
02/09 22:56, 19F
→
02/09 23:03, , 20F
02/09 23:03, 20F
→
02/09 23:13, , 21F
02/09 23:13, 21F
→
02/10 02:19, , 22F
02/10 02:19, 22F