[分析]有關conformal mapping的證明
不好意思,小弟有一個問題想請教各路複變高手:
Prove that if f:D→D is analytic and has two distinct fixed points, then f
is the identity.(i.e. f(z)=z for all z belonging to D)
(本題出自Stein & Shakarchi的Complex Analysis第250頁第12題的(a)小題)
小弟是想令α,β為f的fixed point,然後令
F(z)=(φ_f(α))^(-1)。f。(φ_α)
α-z
其中φ_α(z)= ─────── ,α belongs to C
1-(α_bar)z
(α_bar是α的共軛複數)
驗出F(0)=0後,用了Schwarz lemma得到|F(z)|=|z|,從而得知F(z)=e^(iθ)z
但是在這一步就卡了,懇請各路高手提供小弟一些提示,感激不盡!!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.116.118.4
推
01/05 07:55, , 1F
01/05 07:55, 1F
→
01/05 08:36, , 2F
01/05 08:36, 2F
推
01/05 08:40, , 3F
01/05 08:40, 3F
→
01/05 08:41, , 4F
01/05 08:41, 4F
→
01/06 00:31, , 5F
01/06 00:31, 5F
→
01/06 00:32, , 6F
01/06 00:32, 6F
→
01/06 00:33, , 7F
01/06 00:33, 7F
→
01/06 00:34, , 8F
01/06 00:34, 8F