[SVWB] 12%中虹 每10包保底1虹 每包虹卡期望值=?

看板Marginalman作者 (伊卡)時間4月前 (2025/09/02 20:25), 編輯推噓3(300)
留言3則, 3人參與, 4月前最新討論串1/1
Let’s break it down step-by-step! **Base Rate:** Each pack has a 12% chance for a legendary, unless 9 consecutive packs have no legendary, then the 10th is guaranteed legendary. **We need the expected (average) number of legendaries per pack given this “ pity timer” rule.** --- ### **Step 1: Model the Sequence** - Packs 1–9: Each has 12% chance for legendary, 88% chance for none. - If packs 1–9 all fail (probability \(0.88^9\)), pack #10 **guaranteed** legendary. ### **Step 2: Stationary Process** It’s a periodic process with resets after each legendary. EV per pack will be average legendaries per cycle divided by cycle length. #### **The 'cycle':** A cycle is from the last legendary to the next. There are two ways a cycle ends: 1) You get a legendary before hitting the 10-pity. 2) You get nothing for 9 packs, then a guaranteed legendary on the 10th. Let’s compute **expected legendaries per cycle** (which is always 1), and **expected cycle length**. --- ### **Step 3: Expected Cycle Length** Let’s define $X$ = number of packs until a legendary is obtained (with pity timer). #### **Probability you get legendary in pack $k$** (for $k$ = 1 to 9): For pack $k$: - No legendary in packs 1 to $k$ – 1 ($0.88^{k-1}$), - Legendary in pack $k$ ($0.12$): $P(\text{legendary in pack }k) = 0.88^{k-1} \cdot 0.12$ For packs 1–9, sum over $k=1$ to $9$. For pack 10 (pity): - No legendary in all packs 1–9 ($0.88^{9}$), - Guaranteed legendary in pack 10. So, $P(\text{legendary in pack 10}) = 0.88^9$ **Expected cycle length:** $E = \sum_{k=1}^9 k \cdot (0.88^{k-1} \cdot 0.12) + 10 \cdot (0.88^9)$ --- ### **Step 4: Compute the Value** Let’s compute numbers step by step: #### Calculate $S = \sum_{k=1}^{9} k \cdot 0.88^{k-1} \cdot 0.12$ You can factor $0.12$ out: $S = 0.12 \times \sum_{k=1}^9 k \cdot 0.88^{k-1}$ Let's make a table: | $k$ | $0.88^{k-1}$ | $k \cdot 0.88^{k-1}$ | |---|----------|------------------------| | 1 | 1 | 1 | | 2 | 0.88 | 1.76 | | 3 | 0.7744 | 2.3232 | | 4 | 0.681472 | 2.725888 | | 5 | 0.599698 | 2.99849 | | 6 | 0.527734 | 3.166404 | | 7 | 0.464410 | 3.25087 | | 8 | 0.408679 | 3.269434 | | 9 | 0.359641 | 3.236769 | Sum the last column: $T = 1 + 1.76 + 2.3232 + 2.725888 + 2.99849 + 3.166404 + 3.25087 + 3.269434 + 3.236769 =$ Let's add step-wise: - $1 + 1.76 = 2.76$ - $2.76 + 2.3232 = 5.0832$ - $5.0832 + 2.725888 = 7.809088$ - $7.809088 + 2.99849 = 10.807578$ - $10.807578 + 3.166404 = 13.973982$ - $13.973982 + 3.25087 = 17.224852$ - $17.224852 + 3.269434 = 20.494286$ - $20.494286 + 3.236769 = 23.731055$ So, $S_1 = 0.12 \times 23.731055 = 2.8477266$ Now add pity timer contribution: $0.88^9 = 0.359641$ $S_2 = 10 \times 0.359641 = 3.59641$ Sum for expected cycle length: $E = S_1 + S_2 = 2.8477266 + 3.59641 = 6.4441366$ --- ### **Step 5: Compute EV legendary per pack** Each cycle yields **exactly 1 legendary**. $EV_{\text{legendary/pk}} = \frac{1}{E} = \frac{1}{6.4441} \approx 0.1551$ --- ## **Final Answer** **The expected number of legendaries per pack, given 12% rate and a pity timer at 10 packs, is about:0.155 egendary per pack. Or about **15.5%** chance on average per pack over the long run. 答案是15.5% 也就是平均每6.45包會拿到一虹 你答對了嗎 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 73.202.142.232 (美國) ※ 文章網址: https://www.ptt.cc/bbs/Marginalman/M.1756815915.A.EC6.html

09/02 20:26, 4月前 , 1F
差不多吧
09/02 20:26, 1F

09/02 20:26, 4月前 , 2F
我聽說是6包
09/02 20:26, 2F

09/02 21:22, 4月前 , 3F
無感
09/02 21:22, 3F
文章代碼(AID): #1ejk8hx6 (Marginalman)