[取暖] 報了

看板Marginalman作者 (阿康)時間9年前 (2016/12/07 16:54), 編輯推噓13(1528)
留言25則, 18人參與, 最新討論串1/1
馬的上機考試 他馬的好男 幹幹幹幹幹 附上我今天得奮鬥 考試偷上PTT 西西 ___ ____ ____ ____ ____ (R) /__ / ____/ / ____/ ___/ / /___/ / /___/ 13.0 Copyright 1985-2013 StataCorp LP Statistics/Data Analysis StataCorp 4905 Lakeway Drive Special Edition College Station, Texas 77845 USA 800-STATA-PC http://www.stata.com 979-696-4600 stata@stata.com 979-696-4601 (fax) 71-student Stata lab perpetual license: Serial number: 401306223724 Licensed to: SHU-S303 Shih Shin University Notes: 1. (/v# option or -set maxvar-) 5000 maximum variables 2. New update available; type -update all- . use "C:\Users\s404\Downloads\KIELMC.xls", clear file C:\Users\s404\Downloads\KIELMC.xls not Stata format r(610); . import excel "C:\Users\s404\Downloads\KIELMC.xls", sheet("Sheet1") . gen price = ln(prive) prive not found r(111); . gen lnprice = ln(price) price not found r(111); . gen lnprice == ln(price) == invalid name r(198); . clear . *(11 variables, 142 observations pasted into data editor) . save "C:\Users\s404\Desktop\kielmc.dta" file C:\Users\s404\Desktop\kielmc.dta saved . gen lnprice = ln(price) . sum Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- age | 142 13.97887 23.93682 0 131 nbh | 142 1.964789 2.194164 0 6 cbd | 142 15063.38 8344.714 1000 33000 intst | 142 15577.46 8466.307 1000 33000 price | 142 120647.1 44359.89 41000 270000 -------------+-------------------------------------------------------- rooms | 142 6.591549 .8264676 4 9 area | 142 2241.725 744.4012 735 5136 land | 142 35437.78 17976.25 3049 81273 baths | 142 2.380282 .8054107 1 4 dist | 142 20110.56 8047.155 5000 38900 -------------+-------------------------------------------------------- wind | 142 6.767606 2.448521 3 11 lnprice | 142 11.62902 .3899205 10.62133 12.50618 . gen lndist = ln(dist) . sum Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- age | 142 13.97887 23.93682 0 131 nbh | 142 1.964789 2.194164 0 6 cbd | 142 15063.38 8344.714 1000 33000 intst | 142 15577.46 8466.307 1000 33000 price | 142 120647.1 44359.89 41000 270000 -------------+-------------------------------------------------------- rooms | 142 6.591549 .8264676 4 9 area | 142 2241.725 744.4012 735 5136 land | 142 35437.78 17976.25 3049 81273 baths | 142 2.380282 .8054107 1 4 dist | 142 20110.56 8047.155 5000 38900 -------------+-------------------------------------------------------- wind | 142 6.767606 2.448521 3 11 lnprice | 142 11.62902 .3899205 10.62133 12.50618 lndist | 142 9.816675 .4537118 8.517193 10.56875 . gen lninsit = ln(intst) . gen lnarea = ln(area) . gen land = ln(land) land already defined r(110); . gen land = ln(land) land already defined r(110); . gen lnprice = ln(price) lnprice already defined r(110); . gen lnland = ln(land) . gen age2 = age^2 . sum Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- age | 142 13.97887 23.93682 0 131 nbh | 142 1.964789 2.194164 0 6 cbd | 142 15063.38 8344.714 1000 33000 intst | 142 15577.46 8466.307 1000 33000 price | 142 120647.1 44359.89 41000 270000 -------------+-------------------------------------------------------- rooms | 142 6.591549 .8264676 4 9 area | 142 2241.725 744.4012 735 5136 land | 142 35437.78 17976.25 3049 81273 baths | 142 2.380282 .8054107 1 4 dist | 142 20110.56 8047.155 5000 38900 -------------+-------------------------------------------------------- wind | 142 6.767606 2.448521 3 11 lnprice | 142 11.62902 .3899205 10.62133 12.50618 lndist | 142 9.816675 .4537118 8.517193 10.56875 lninsit | 142 9.450805 .717965 6.907755 10.40426 lnarea | 142 7.655592 .3571932 6.599871 8.54403 -------------+-------------------------------------------------------- lnland | 142 10.27889 .7205409 8.022569 11.30557 age2 | 142 764.3451 2285.425 0 17161 . reg lnprice lndist lninsit lnarea lnland rooms baths age age2 Source | SS df MS Number of obs = 142 -------------+------------------------------ F( 8, 133) = 50.63 Model | 16.1382262 8 2.01727828 Prob > F = 0.0000 Residual | 5.29912814 133 .039843069 R-squared = 0.7528 -------------+------------------------------ Adj R-squared = 0.7379 Total | 21.4373543 141 .152037974 Root MSE = .19961 ------------------------------------------------------------------------------ lnprice | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lndist | .0574554 .0572443 1.00 0.317 -.0557716 .1706824 lninsit | -.0388619 .0513121 -0.76 0.450 -.1403551 .0626314 lnarea | .3229865 .075932 4.25 0.000 .172796 .473177 lnland | .0701067 .0394395 1.78 0.078 -.0079031 .1481165 rooms | .0215954 .0306917 0.70 0.483 -.0391116 .0823023 baths | .1443961 .0437568 3.30 0.001 .0578469 .2309454 age | -.0080733 .002876 -2.81 0.006 -.0137619 -.0023847 age2 | .0000427 .0000253 1.68 0.095 -7.47e-06 .0000928 _cons | 7.8332 .6532293 11.99 0.000 6.541138 9.125263 ------------------------------------------------------------------------------ . reg lnprice lndist Source | SS df MS Number of obs = 142 -------------+------------------------------ F( 1, 140) = 30.79 Model | 3.86427081 1 3.86427081 Prob > F = 0.0000 Residual | 17.5730835 140 .125522025 R-squared = 0.1803 -------------+------------------------------ Adj R-squared = 0.1744 Total | 21.4373543 141 .152037974 Root MSE = .35429 ------------------------------------------------------------------------------ lnprice | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lndist | .364875 .0657613 5.55 0.000 .2348614 .4948886 _cons | 8.047159 .6462415 12.45 0.000 6.769505 9.324813 ------------------------------------------------------------------------------ . clear . sum . clear . gen p=ln(price) price not found r(111); . clear . insheet using "C:\Users\s404\Downloads\KIELMC.csv", clear (11 vars, 142 obs) . gen p = ln(price) . gen d = in(dist) unknown function in() r(133); . gen d = ln(dist) . reg p d Source | SS df MS Number of obs = 142 -------------+------------------------------ F( 1, 140) = 30.79 Model | 3.86427081 1 3.86427081 Prob > F = 0.0000 Residual | 17.5730835 140 .125522025 R-squared = 0.1803 -------------+------------------------------ Adj R-squared = 0.1744 Total | 21.4373543 141 .152037974 Root MSE = .35429 ------------------------------------------------------------------------------ p | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- d | .364875 .0657613 5.55 0.000 .2348614 .4948886 _cons | 8.047159 .6462415 12.45 0.000 6.769505 9.324813 ------------------------------------------------------------------------------ . gen in = ln(intst) '=' invalid obs no r(198); . gen in = ln(intst) '=' invalid obs no r(198); . gen in = ln(intst) '=' invalid obs no r(198); . gen d = ln(dist) d already defined r(110); . gen in = ln(intst) '=' invalid obs no r(198); . gen a = ln(area) . gen tst = ln(intst) . gen l =ln(land) . reg p d tst a l rooms baths age Source | SS df MS Number of obs = 142 -------------+------------------------------ F( 7, 134) = 56.68 Model | 16.0253256 7 2.28933223 Prob > F = 0.0000 Residual | 5.41202871 134 .040388274 R-squared = 0.7475 -------------+------------------------------ Adj R-squared = 0.7344 Total | 21.4373543 141 .152037974 Root MSE = .20097 ------------------------------------------------------------------------------ p | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- d | .0553891 .0576214 0.96 0.338 -.0585759 .1693541 tst | -.0390317 .0516619 -0.76 0.451 -.1412099 .0631464 a | .3192937 .0764178 4.18 0.000 .1681525 .4704348 l | .076824 .0395047 1.94 0.054 -.0013093 .1549574 rooms | .0425277 .0282511 1.51 0.135 -.013348 .0984034 baths | .1669235 .0419442 3.98 0.000 .0839652 .2498818 age | -.0035673 .0010588 -3.37 0.001 -.0056615 -.0014732 _cons | 7.592333 .641711 11.83 0.000 6.323141 8.861526 ------------------------------------------------------------------------------ . testparm tst a l rooms baths age ( 1) tst = 0 ( 2) a = 0 ( 3) l = 0 ( 4) rooms = 0 ( 5) baths = 0 ( 6) age = 0 F( 6, 134) = 50.18 Prob > F = 0.0000 . test d=-tst ( 1) d + tst = 0 F( 1, 134) = 0.11 Prob > F = 0.7435 . gen age2=age^2 . reg p d tst a l rooms baths age age2 Source | SS df MS Number of obs = 142 -------------+------------------------------ F( 8, 133) = 50.63 Model | 16.1382262 8 2.01727828 Prob > F = 0.0000 Residual | 5.29912814 133 .039843069 R-squared = 0.7528 -------------+------------------------------ Adj R-squared = 0.7379 Total | 21.4373543 141 .152037974 Root MSE = .19961 ------------------------------------------------------------------------------ p | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- d | .0574554 .0572443 1.00 0.317 -.0557716 .1706824 tst | -.0388619 .0513121 -0.76 0.450 -.1403551 .0626314 a | .3229865 .075932 4.25 0.000 .172796 .473177 l | .0701067 .0394395 1.78 0.078 -.0079031 .1481165 rooms | .0215954 .0306917 0.70 0.483 -.0391116 .0823023 baths | .1443961 .0437568 3.30 0.001 .0578469 .2309454 age | -.0080733 .002876 -2.81 0.006 -.0137619 -.0023847 age2 | .0000427 .0000253 1.68 0.095 -7.47e-06 .0000928 _cons | 7.8332 .6532293 11.99 0.000 6.541138 9.125263 ------------------------------------------------------------------------------ -- 我老婆1 http://i.imgur.com/ikScXFG.jpg
我老婆2 http://i.imgur.com/J0y6u95.jpg
我老婆3 http://i.imgur.com/TWx1nP9.jpg
我老婆4 http://i.imgur.com/hrujyxP.jpg
我老婆5 http://i.imgur.com/5loANjo.jpg
我老婆6 http://i.imgur.com/3ByfPnf.jpg
我老婆7 http://i.imgur.com/cylfjzv.jpg
我老婆8 http://i.imgur.com/u4TTRHQ.jpg
-- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 192.192.154.42 ※ 文章網址: https://www.ptt.cc/bbs/Marginalman/M.1481100840.A.3F8.html

12/07 16:55, , 1F
什麼鬼,看不懂@@
12/07 16:55, 1F

12/07 16:55, , 2F
終於有IP了
12/07 16:55, 2F

12/07 16:55, , 3F
這三小
12/07 16:55, 3F

12/07 16:56, , 4F
阿康你該不會讀什麼大數據分析之類ㄉ系吧 @@
12/07 16:56, 4F

12/07 16:56, , 5F
阿康經濟
12/07 16:56, 5F

12/07 16:57, , 6F
看無啦!簡化成20字內告訴我是什麼!
12/07 16:57, 6F

12/07 16:58, , 7F
阿康是資工系?
12/07 16:58, 7F

12/07 16:58, , 8F
上機考寫的答案ㄅ
12/07 16:58, 8F

12/07 16:58, , 9F
我猜這堂課是office實作
12/07 16:58, 9F

12/07 16:58, , 10F
這是世新IP?
12/07 16:58, 10F

12/07 16:59, , 11F
回歸分析
12/07 16:59, 11F

12/07 16:59, , 12F
世新康
12/07 16:59, 12F

12/07 17:07, , 13F
丁特學弟
12/07 17:07, 13F

12/07 17:10, , 14F
給我縮短在20字以內
12/07 17:10, 14F

12/07 17:12, , 15F
看不懂喇!!!
12/07 17:12, 15F

12/07 17:14, , 16F
我也看不懂
12/07 17:14, 16F

12/07 17:14, , 17F
工三小
12/07 17:14, 17F

12/07 17:21, , 18F
講中文
12/07 17:21, 18F

12/07 17:40, , 19F
潮喔
12/07 17:40, 19F

12/07 17:43, , 20F
亂碼
12/07 17:43, 20F

12/07 18:08, , 21F
阿康跑三小SPSS
12/07 18:08, 21F

12/07 18:15, , 22F
這些是三小@@
12/07 18:15, 22F

12/07 18:26, , 23F
就是Excel跑回歸然後看他要分析啥阿
12/07 18:26, 23F

12/07 18:26, , 24F
題目應該是旅遊的 因為有看到年齡居住甚麼的
12/07 18:26, 24F

12/07 19:12, , 25F
題目是 房價與 垃圾掩埋場 差ㄅ多喇
12/07 19:12, 25F
文章代碼(AID): #1OHyueFu (Marginalman)