[理工] 時間複雜度 Time Complexity
N為問題大小,K為大於1的常數。
請比較以下兩個時間複雜度(Time complexity)的大小:
K^log(N)
log(N^N)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.255.130.167
※ 文章網址: https://www.ptt.cc/bbs/Grad-ProbAsk/M.1452701805.A.C87.html
推
01/14 00:29, , 1F
01/14 00:29, 1F
推
01/14 01:21, , 2F
01/14 01:21, 2F
推
01/14 01:38, , 3F
01/14 01:38, 3F
→
01/14 01:38, , 4F
01/14 01:38, 4F
→
01/14 01:39, , 5F
01/14 01:39, 5F
→
01/14 03:05, , 6F
01/14 03:05, 6F
→
01/14 03:06, , 7F
01/14 03:06, 7F
K^log(N) 取 log 為 log(K^log(N)) = log(N) * log(K)
log(N^N) 取 log 為 log(N*log(N)) = log(N) + loglog(N)
那麼 [ log(N) * log(K) ] 一定會大於 [ log(N) + loglog(N) ] 嗎 ? @@"
※ 編輯: OSDBNetwork (111.255.130.167), 01/14/2016 03:17:28
→
01/14 09:22, , 8F
01/14 09:22, 8F
→
01/14 09:24, , 9F
01/14 09:24, 9F
→
01/14 09:25, , 10F
01/14 09:25, 10F
→
01/14 10:12, , 11F
01/14 10:12, 11F
→
01/14 10:13, , 12F
01/14 10:13, 12F
→
01/14 10:15, , 13F
01/14 10:15, 13F
if log(K) > 1 , then [ log(N) * log(K) ] > [ log(N) + loglog(N) ] .
if log(K) <= 1 , then [ log(N) * log(K) ] < [ log(N) + loglog(N) ] .
這樣成立嗎?
※ 編輯: OSDBNetwork (111.255.130.167), 01/14/2016 10:29:44
→
01/14 11:22, , 14F
01/14 11:22, 14F
→
01/15 17:18, , 15F
01/15 17:18, 15F
推
01/15 20:48, , 16F
01/15 20:48, 16F
→
01/16 01:30, , 17F
01/16 01:30, 17F
→
01/16 01:31, , 18F
01/16 01:31, 18F