[商管]101政大財管 統計

看板Grad-ProbAsk作者 (Mark)時間13年前 (2013/02/17 12:56), 編輯推噓3(305)
留言8則, 3人參與, 最新討論串1/1
according to survey data,college stuents carried an average of$3173 credit debt 2008.Suppose the probability distribution of the current credit card debt for all college student is known but its mean is $3173 and the standard devitation is $750 1) find the probability that the credit card debt for a randomly selected college is between $2109and$3605 想請問各位覺得這題該用柴比雪夫還是該假設為常態分配,標準化來解呢? 我看解答是用柴比雪夫解 p{2109<x<3605}=p{│x-(2109+3605)/2│<= (3605-2109)/2} >=1-{750^2+[3173-(2109+3605)/2]^2}/[(3605-2109)/2]^2 但我不懂這解法,請大家賜教 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.168.246.151

02/17 16:28, , 1F
用柴比雪夫OK 別理解答的算法 自己算就好啦
02/17 16:28, 1F

02/17 22:20, , 2F
但是-1064<x-3173<432 這樣怎麼用柴比雪夫
02/17 22:20, 2F

02/19 14:04, , 3F
P(-1064<X-3173<432) > P(-432<X-3173<432)
02/19 14:04, 3F

02/19 14:05, , 4F
另外配分高或有時間的話 這種題目可以給兩種算法
02/19 14:05, 4F

02/19 14:05, , 5F
另一種就是假設母體呈鐘形分配 然後下去算
02/19 14:05, 5F

02/20 22:54, , 6F
這題我也不知如何用柴比雪夫解
02/20 22:54, 6F

02/20 22:55, , 7F
照g大的算法是P(...)>1-(780/432)^2 <--是負值
02/20 22:55, 7F

02/20 22:56, , 8F
=>P(|X-3173|<432)>0 這樣的結論感覺很怪..
02/20 22:56, 8F
文章代碼(AID): #1H86C6UZ (Grad-ProbAsk)