Re: [理工] [線代] 相似,特徵向量

看板Grad-ProbAsk作者 ( 並不好笑 )時間13年前 (2013/01/05 22:32), 編輯推噓0(001)
留言1則, 1人參與, 最新討論串1/1
※ 引述《itsart (secret)》之銘言: : 1.If B is similar to A and B is invertible, then A is invertible : and A^-1 and B^-1 are similar : 這題該怎麼證? -1 B is invertible => B exists -1 A and B are similar => there's exist P ,invertible, s.t. A=PBP -1 -1 -1 -1 -1 -1 -1 -1 A(PB P ) = (PBP )(PB P ) = PBP PB P = I -1 -1 -1 -1 -1 -1 -1 -1 and (PB P )A = (PB P )(PBP )= PB P PBP =I -1 -1 -1 -1 -1 thus A =PB P , and so A and B are similar : 2.If Ax=λx for some vector x,thenλ may be not an eigenvalue of A : 答案為True,是因為x可能為0向量嗎 是的 -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 203.67.110.50

01/05 22:45, , 1F
了解! 謝謝~
01/05 22:45, 1F
文章代碼(AID): #1Gw3cGFK (Grad-ProbAsk)