[理工] 線代
(1)假設T屬於L(V,V),其中V為複內積空間
若<T(u),v>=0,對所有u,v屬於V,則T=O
證:
因為<T(u),v>=0,對所有u,v屬於V
=><T(u),v>=0,對所有u屬於V
第一行到第二行用什麼觀念轉的.....?
(2)A保長度,即||Ax||=||x||,對所有x屬於R^n*1
則A為正交矩陣
證:
對所有x屬於R^n*1,
T T T 2 2 T T
x A Ax=(Ax) Ax=||Ax|| =||x|| =x x=x Ix
T
=>A A=I
所以A為正交矩陣
此題可以這樣證嗎?
(3)
hermatian matrix 跟 unitary matrix有一樣嗎?
我記得hermitian的定義是A^H=A
而unitary則是A^-1=A^H
但我剛在寫小黃的書卻說A is hermitian matrices,
所以AA^H=I,得A^-1=A^H
是我搞錯了,還是老師寫錯了
謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.70.42.106
→
10/13 19:21, , 1F
10/13 19:21, 1F
※ 編輯: KAINTS 來自: 111.70.42.106 (10/13 19:52)
※ 編輯: KAINTS 來自: 123.193.7.20 (10/13 20:51)
→
10/13 21:07, , 2F
10/13 21:07, 2F
→
10/13 21:08, , 3F
10/13 21:08, 3F
→
10/13 21:15, , 4F
10/13 21:15, 4F
→
10/13 21:16, , 5F
10/13 21:16, 5F
→
10/13 21:19, , 6F
10/13 21:19, 6F
→
10/13 21:21, , 7F
10/13 21:21, 7F
→
10/13 21:22, , 8F
10/13 21:22, 8F
可第二題小黃書中是寫
對所有x,y屬於R^n*1
T T T
y A Ax=(Ay)Ax=<Ax,Ay>=1/4||Ax+Ay||-1/4||Ax-Ay||
T T
=<x,y>=y x=y Ix
T
得A A=I,所以A is an orthogonal matrix
他也不知道A是否可逆ㄟ...
→
10/13 21:22, , 9F
10/13 21:22, 9F
Let A and B be Hermitian natrices.Please show that the
inverse of the matrix C=AB is also Hermitian.
※ 編輯: KAINTS 來自: 123.193.7.20 (10/13 21:23)
→
10/13 21:23, , 10F
10/13 21:23, 10F
→
10/13 21:25, , 11F
10/13 21:25, 11F
→
10/13 21:25, , 12F
10/13 21:25, 12F
→
10/13 21:26, , 13F
10/13 21:26, 13F
※ 編輯: KAINTS 來自: 123.193.7.20 (10/13 21:33)
→
10/13 22:40, , 14F
10/13 22:40, 14F
→
10/13 22:42, , 15F
10/13 22:42, 15F
→
10/13 23:15, , 16F
10/13 23:15, 16F
→
10/13 23:17, , 17F
10/13 23:17, 17F
→
10/13 23:19, , 18F
10/13 23:19, 18F
→
10/13 23:23, , 19F
10/13 23:23, 19F
討論串 (同標題文章)