[理工] 工數 Laplace ODE
Use the Laplace transform to solve the differential equation:
ty''+(4t-2)y'-4y=0 ; y(0)=1
我解到
s^7
Y= ∫ ------- ds 就卡住了
(s+1)^5
變數變換令(s+1)=t應該有辦法積出來
但這個積分有比較快的方法積出來嗎?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 61.57.78.145
推
02/10 19:33, , 1F
02/10 19:33, 1F
→
02/10 20:01, , 2F
02/10 20:01, 2F
推
02/10 20:09, , 3F
02/10 20:09, 3F
→
02/10 20:33, , 4F
02/10 20:33, 4F
推
02/10 20:57, , 5F
02/10 20:57, 5F
推
02/10 21:01, , 6F
02/10 21:01, 6F
→
02/10 21:02, , 7F
02/10 21:02, 7F
→
02/10 21:02, , 8F
02/10 21:02, 8F
→
02/10 21:02, , 9F
02/10 21:02, 9F
→
02/10 21:04, , 10F
02/10 21:04, 10F
→
02/10 21:04, , 11F
02/10 21:04, 11F
→
02/10 21:05, , 12F
02/10 21:05, 12F
→
02/10 21:05, , 13F
02/10 21:05, 13F
推
02/10 21:06, , 14F
02/10 21:06, 14F
→
02/10 21:07, , 15F
02/10 21:07, 15F
→
02/10 21:09, , 16F
02/10 21:09, 16F
→
02/10 21:21, , 17F
02/10 21:21, 17F
→
02/10 21:32, , 18F
02/10 21:32, 18F
→
02/10 21:38, , 19F
02/10 21:38, 19F
→
02/10 21:39, , 20F
02/10 21:39, 20F
我腦殘算錯了, 算出來
(s+4)+2 c 1 1 1 1
Y(s)=-------- + ----[----- + -------- - ---- + -------- ]
(s+4)^2 16 s^2 (s+4)^2 2s 2(s+4)
反拉
-4t -4t c -4t 1 1 -4t
y(t)=e + 2te + ----[t + te - --- + ---e ]
16 2 2
※ 編輯: cg1436 來自: 61.57.78.145 (02/10 23:15)
→
02/11 00:14, , 21F
02/11 00:14, 21F
→
02/11 00:28, , 22F
02/11 00:28, 22F
推
02/11 13:30, , 23F
02/11 13:30, 23F
→
09/11 14:55, , 24F
09/11 14:55, 24F