[理工] [工數] 複變小觀念的問題
小弟又來發問複變了
1.
Use Cauchy's theorem to solve
1-exp(2z)
∫ ────── dz
c z^2
where C is a closed contour as follows :
│z│ = 1
sol :
由Cauchy's積分公式可知
[n] n! f(z)
f (a) = ── ∫ ────── dz
2πi c (z-a)^(n+1)
其中f(z)在單簡封閉曲線C內及C上均為可解析,且a在C內。
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
請問要如何知道f(z)可解析和a在C內?
我知道解析的定義,但不知道要如何運用到題目上面
2. 7 3
Show that all roots of the equation z - 2z + 8 = 0 satisfy 1 <│z│< 2.
Hint : Use Rouche's theorem.
sol: 7 3
令C1為│z│= 1,再令f1(z) = 8、g1(z) = z -2z 故在C1上,即│z│= 1時
7 3 7 3
│g1(z)│=│z -2z│≦│z │+│2z│= 3 < 8 =│f1(z)│
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
請問上面那行是如何從z變成常數?
以上2個問題,再此先謝過解答的板友,感激不盡!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 101.13.36.205
→
11/09 16:04, , 1F
11/09 16:04, 1F
→
11/09 16:06, , 2F
11/09 16:06, 2F
→
11/09 16:06, , 3F
11/09 16:06, 3F
→
11/09 16:07, , 4F
11/09 16:07, 4F
→
11/09 16:09, , 5F
11/09 16:09, 5F
→
11/10 11:17, , 6F
11/10 11:17, 6F