Re: [理工] 工數 Bernoulli 台大土木考古題請教!

看板Grad-ProbAsk作者 (TMC)時間14年前 (2011/03/31 00:42), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《andy4526 (QQQQQQQ)》之銘言: : The Bernoulli equations written as P(x)y'+Q(x)y=R(x)*y^a. : If the integrating factor u=f(x)*y^b can make tje Bernoulli equation exact. : Find f(x) and b in terns of P(x) , Q (x) , R(x) and a : 答案是 1. b=-a : 2. f(x)=exp{∫[1(1-a)Q(x)-P'(x)/P(x)] dx}=1/P(x){∫(1-a)Q(x)/P(x) dx} : 我怎麼算怎都跟答案不一樣阿 好心人幫個忙吧! a a P(x)y'+Q(x)y=R(x)*y -> P(x)dy + [Q(x)y-R(x)y ]dx = 0 b 乘上積分因子 u=f(x)*y 使為正合ODE b b a f(x)*y * P(x)dy + f(x)*y [Q(x)y-R(x)y ] dx = 0 b @ [f(x)*y * P(x)] b @f @P ------------------ = y [ P-- +f --] @x @x @x b a @ {f(x)*y [Q(x)y-R(x)y ] } b a+b-1 ---------------------------- = f * [ (b+1)Qy -(a+b)Ry ] @y b df dP b b+a-1 => y [ P-- +f --] = f*y (b+1)Q - f (a+b)Ry ....(1) dx dx 若等號成立,則 a+b-1 = b => a=1 (不合) { a+b=0 -> b= -a 代入(1)式 df dP df dP [ P-- +f --] = f (1-a)Q => P --- + ( --- - (1-a)Q )f = 0 : 1階線性ODE dx dx dx dx P' - (1-a)Q (1-a)Q Q -∫ -------------- dx ∫------- dx - lnP (1-a)∫---dx P P 1 P => f= e = e = --- e P 有錯請指正. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 163.22.18.57 ※ 編輯: TsungMingC 來自: 163.22.18.57 (03/31 01:40)
文章代碼(AID): #1Darrr31 (Grad-ProbAsk)
文章代碼(AID): #1Darrr31 (Grad-ProbAsk)