Re: [理工] 工數 Bernoulli 台大土木考古題請教!
※ 引述《andy4526 (QQQQQQQ)》之銘言:
: The Bernoulli equations written as P(x)y'+Q(x)y=R(x)*y^a.
: If the integrating factor u=f(x)*y^b can make tje Bernoulli equation exact.
: Find f(x) and b in terns of P(x) , Q (x) , R(x) and a
: 答案是 1. b=-a
: 2. f(x)=exp{∫[1(1-a)Q(x)-P'(x)/P(x)] dx}=1/P(x){∫(1-a)Q(x)/P(x) dx}
: 我怎麼算怎都跟答案不一樣阿 好心人幫個忙吧!
a a
P(x)y'+Q(x)y=R(x)*y -> P(x)dy + [Q(x)y-R(x)y ]dx = 0
b
乘上積分因子 u=f(x)*y 使為正合ODE
b b a
f(x)*y * P(x)dy + f(x)*y [Q(x)y-R(x)y ] dx = 0
b
@ [f(x)*y * P(x)] b @f @P
------------------ = y [ P-- +f --]
@x @x @x
b a
@ {f(x)*y [Q(x)y-R(x)y ] } b a+b-1
---------------------------- = f * [ (b+1)Qy -(a+b)Ry ]
@y
b df dP b b+a-1
=> y [ P-- +f --] = f*y (b+1)Q - f (a+b)Ry ....(1)
dx dx
若等號成立,則
a+b-1 = b => a=1 (不合)
{
a+b=0 -> b= -a 代入(1)式
df dP df dP
[ P-- +f --] = f (1-a)Q => P --- + ( --- - (1-a)Q )f = 0 : 1階線性ODE
dx dx dx dx
P' - (1-a)Q (1-a)Q Q
-∫ -------------- dx ∫------- dx - lnP (1-a)∫---dx
P P 1 P
=> f= e = e = --- e
P
有錯請指正.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 163.22.18.57
※ 編輯: TsungMingC 來自: 163.22.18.57 (03/31 01:40)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):