Re: [理工] 線代問題
※ 引述《king111 (.....)》之銘言:
: 請問有人可以幫解這三題嗎 我想很久還是想不出來... 謝謝
: Let T:R4→R3 be a linear transformation defined by
: T(x,y,z,t)=(x-2y+z-t,3x-2z+3t,5x-4y+t)
: Find the value of w if(1,5,w)屬於Im T,the image of T
Im(T) = span{ T(e1), T(e2), T(e3), T(e4)}
= span{(1,3,5),(-2,0,-4),(1,-2,0),(-1,3,1)}
=> 刪去線性相依的向量(-1,3,1)
∴Im(T)的一組基底為 { (1,3,5), (-2,0,-4), (1,-2,0) }
∴此基底生成(1,5,w)
=> (1,5,w) = a (1,3,5) + b (-2,0,-4) + c (1,-2,0)
a-2b+c = 1 ---- A
=> 3a -2c = 5 ---- B
5a -4b = w ---- C
=> 2A+B = C
∴w = 7
其實這題可以直接用看的,不需要這麼麻煩( ′-`)y-~
: Give an example of a martrix A with the propety that Ax=b has a solution for
: b=(1,-3,1) and has no solution for b=(0,1,2).
就...隨便找吧
找個一.三列相等的矩陣
[1 2 1]
取 A= [3 4 5]
[1 2 1]
: If u,v,and w are nonzero vectors and r is a scalar,prove that
: (a) (ru)v = r(uv)
: (b) (u+v)w = uw + vw
這好難..我不會證..Orz
請求高手幫忙
有錯誤請指正,感謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.248.223.89
推
03/08 00:38, , 1F
03/08 00:38, 1F
推
03/08 00:44, , 2F
03/08 00:44, 2F
→
03/08 00:45, , 3F
03/08 00:45, 3F
→
03/08 00:45, , 4F
03/08 00:45, 4F
→
03/08 00:47, , 5F
03/08 00:47, 5F
推
03/08 00:48, , 6F
03/08 00:48, 6F
→
03/08 00:48, , 7F
03/08 00:48, 7F
→
03/08 00:49, , 8F
03/08 00:49, 8F
→
03/08 00:49, , 9F
03/08 00:49, 9F
→
03/08 00:50, , 10F
03/08 00:50, 10F
→
03/08 00:50, , 11F
03/08 00:50, 11F
→
03/08 00:51, , 12F
03/08 00:51, 12F
→
03/08 06:58, , 13F
03/08 06:58, 13F
→
03/08 06:59, , 14F
03/08 06:59, 14F
→
03/08 06:59, , 15F
03/08 06:59, 15F
推
03/08 12:48, , 16F
03/08 12:48, 16F
推
03/08 15:25, , 17F
03/08 15:25, 17F
→
09/11 14:20, , 18F
09/11 14:20, 18F
討論串 (同標題文章)