[商管] [統計] 99政大經濟
題目網址 http://small.lib.nccu.edu.tw/exam/data/master/econo/econo99.pdf
A random sample of size n, Y1,Y2,...Yn, is taken from the pdf
fy(y;Θ)=cyΘ^2 , 0<=y<=1/Θ,
where c is a constant and Θ is the unknown parameter of interest.
Let Θ^mm denote the Method of Moments estimator for Θ, and Θ^ml the
Maximum Likelihood estimator for Θ
(a) find Θ^mm and Θ^ml
(c) show the Cramer-Rao lower bound in this case
(e) is Θ^mm a sufficient estimator for Θ? why or why not?
a小題我算的答案是 Θ^mm=3*xbar/c Θ^ml是順序統計量Y(n)
因為這題y的範圍跟參數有關,所以我取y的最大值當MLE估計量對嗎??
b小題的問題是,CR lower bound 不是需要變數的範圍與參數無關嗎?
還是說沒有關係?也是直接微?
e小題是因為,假設我a小題答案對的情況,我不知道怎麼算Θ^mm的分配來證明其
為充份;另一方面,我想說直接用fisher方法求出充份統計量,但算出來的答案
是順序統計量Y(n),所以跟Θ^mm也不同,但充份統計量好像也不唯一
所以不知道該怎麼證明
2.
Let X1,X2,...,Xn and Y1,Y2,...,Ym be independent random samples from normal
distributions with mean μx and μy and standard derivations ox and oy,
respectively.
(b) For testing H0: ox^2 =oy^2 versus H1: ox^2 不等於oy^2
1. Derive the likelihood ratio test statistic in detail
2. Explain how to implement the likelihood ratio test given the
significance level α.
請問第1.題概度比要用雙變數的常態分配是嗎?分子是二個變異數帶相同值,分母是
帶不同值?
而第2.題有點不太清楚題目要問什麼...
希望高手賜教 謝謝
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 163.13.225.37
※ 編輯: chris1 來自: 163.13.225.37 (02/22 18:56)
※ 編輯: chris1 來自: 163.13.225.37 (02/22 19:26)
推
02/23 00:34, , 1F
02/23 00:34, 1F
→
02/23 00:36, , 2F
02/23 00:36, 2F
→
02/23 00:36, , 3F
02/23 00:36, 3F
→
02/23 00:36, , 4F
02/23 00:36, 4F
推
02/23 00:41, , 5F
02/23 00:41, 5F
→
02/23 00:42, , 6F
02/23 00:42, 6F
→
02/23 00:43, , 7F
02/23 00:43, 7F
請教一下,為什麼MLE是1/Y(n)呢,如果是的話,為何充份統計量是Y(n)??
而且MLE=1/Y(n),但我算的概似函數是c^n*Πyi*θ^2n,那如果要讓其值最大,1/Y(n)不
是最小的嗎..? 是因為1/θ>Y(n)→θ<1/Y(n)嗎?
※ 編輯: chris1 來自: 118.169.178.83 (02/23 01:25)
推
02/23 08:15, , 8F
02/23 08:15, 8F
→
02/23 08:16, , 9F
02/23 08:16, 9F
感謝J大,方便的話,可以順便幫我看第二題嗎XD
※ 編輯: chris1 來自: 163.13.33.29 (02/23 16:45)
推
02/24 00:05, , 10F
02/24 00:05, 10F
→
02/24 00:06, , 11F
02/24 00:06, 11F
→
02/24 00:07, , 12F
02/24 00:07, 12F
→
02/24 00:08, , 13F
02/24 00:08, 13F
→
02/24 00:08, , 14F
02/24 00:08, 14F
→
02/24 00:09, , 15F
02/24 00:09, 15F
→
02/24 00:09, , 16F
02/24 00:09, 16F
→
02/24 00:10, , 17F
02/24 00:10, 17F
→
02/24 00:10, , 18F
02/24 00:10, 18F
→
02/24 00:11, , 19F
02/24 00:11, 19F
→
02/24 00:12, , 20F
02/24 00:12, 20F
→
09/11 14:18, , 21F
09/11 14:18, 21F