[理工] [線代]-三題線代

看板Grad-ProbAsk作者 (呆呆a蚊子)時間15年前 (2010/10/31 00:44), 編輯推噓1(102)
留言3則, 3人參與, 最新討論串1/1
64 8 -10 1.for A = [ 8 76 -20 ] with eigenvalues 30, 60, and 90 , -10 -20 40 find a real 3x1 vector y and a real number a A y such that the matrix [ ] has eigenvalues 20 , 40 , 80 ,and 100 . y^T a (y^T means the transpose of the vector y ) 2.Find all n by n matrices A satisfying the matrix equality A^3+A^2-A-I=0 0 1 3.Does the matrix A = [ ] have a complex square root C such that C^2 = A ? -1 0 Does A have a real square root R such that R^2 = A ? To each question , if the answer is positive , then derive a proper square root. otherwise show the non-existence. 以上是原題,麻煩各位大大幫忙解惑 謝謝 -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.218.89

10/31 13:18, , 1F
第二題答案是是det(A)=±1嗎?
10/31 13:18, 1F

10/31 13:37, , 2F
很抱歉 無解答...
10/31 13:37, 2F

11/01 19:00, , 3F
第一題 a=60吧
11/01 19:00, 3F
文章代碼(AID): #1Cp4jIod (Grad-ProbAsk)