[商管] [統計] 機率論

看板Grad-ProbAsk作者 (廣伸小隊正夯!!)時間16年前 (2010/03/24 02:51), 編輯推噓1(101)
留言2則, 2人參與, 最新討論串1/1
the joint density function of X and Y is given by f(x,y)=(2e^-x)*(e^-2y) 0 < x < 無限 0 < y < 無限 compute (1) P(X>1,Y<2) (2) P(X<2Y) (3) P(X<3) (where, M = infinity) At first, we need calcuate p.d.f. of r.v. X and Y M M f(x)= S (2e^-x)*(e^-2y)dy = e^-x * S e^(-2y)d(2y) = e^-x*ㄗ(1)= e^-x, 0 0 0<x<M M M f(y)=S (2e^-x)*(e^-2y)dx = 2e^(-2y) * S e^(-x)dx = 2e^(-2y)*ㄗ(1)=2e^(-2y), 0 0 0<y<M 1 2 (1) P(X>1,Y<2)= S S (2e^-x)*(e^-2y)dydx 0 0 1 2 = S e^(-x)*[-e^(-2y)] dx 0 0 1 = (1-e^(-4))*[-e^(-x)] 0 = 1-e^(-1)-e^(-4)+e^(-5) # M (2) P(X<2Y) = S P(X<2Y | Y=y)*P(Y=y) dy 0 M 2y = S S e^(-x)dx *2e^(-2y) dy 0 0 M 2y = S [-e^(-x)] *2e^(-2y) dy 0 0 M = S (2e^(-2y)-2e^(-4y)) dy 0 M 1 M = S e^(-2y)d(2y) - --- S e^(-4y)d(4y) 0 2 0 = ㄗ(1)-(1/2)*ㄗ(1) = 1/2 # 3 3 (3)P(X<3)= S e^(-x)dx = [-e^(-x)] = 1-e^(-3) # 0 0 大概解一下,失眠解得有時會錯... -- HEY~~~HEY~~~CHAAAAARLIE~!   。。。。。 ⊙ . ▼▼▼▼ \▲▲▲▲ φ . \ . δ ./ㄨ \\/ˊ▄▄ \|/ㄑ ( ︶ ˋ\///\/. by Armour@joke -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.114.231.103

03/24 02:55, , 1F
你的第二題算錯了..機率不會大於1
03/24 02:55, 1F

03/24 02:58, , 2F
喔喔 對吼= = 想睡覺了..明天再來改 ,thx
03/24 02:58, 2F
※ 編輯: loveliver 來自: 140.114.54.33 (03/24 08:48) ※ 編輯: loveliver 來自: 140.114.54.33 (03/24 08:50)
文章代碼(AID): #1BgGs_cp (Grad-ProbAsk)