[問題] 線代T/F
※ [本文轉錄自 Math 看板]
作者: ting301 ( ) 看板: Math
標題: [問題] 線代TF
時間: Fri May 8 02:25:46 2009
(i) If an nXn matrix is not invertible, then it has an eigenvector in R^n
問了三人,答案都是True
但我還是覺得有點問題
題目給定的N階方陣A,並未說明在M_nxn(R)之內
假設A = [1 i ]
[-i 1 ]
det(A) = 1-(-i^2) = 0. not invertible
但特徵植0,2 對應之特徵向量(1,i),(1,-i)皆不在R^n內
明顯和後面敘述牴觸
到底該答T還是F
(ii) We can define infinitrly many inner product for an inner product space.
不確定,只要滿足內機空間四條件就可以定義無限多的內積?
完全沒頭緒
(iii) Every matrix in M5x5 has an eigenvector in R^5
和第一題一樣,5*5矩陣的特徵多項式為五次方,必有一實根特徵值,
但我覺得未必對應到實數特徵向量,應該False.??
T
(iv) for any A in M_mxn(R), AA is always diagonalizable.
(v) Let u and v be eigenvectors of a symmetric matrix and u and v are L.I
then u and v are orthogonal.
覺得是False 但說不出理由
感謝賜教了
※ 編輯: ting301 來自: 140.113.100.170 (05/08 09:05)
※ 編輯: ting301 來自: 140.113.100.170 (05/08 09:12)
推
05/08 09:51, , 1F
05/08 09:51, 1F
→
05/08 09:51, , 2F
05/08 09:51, 2F