[計量] 挑戰GRE計量170之二<解答>

看板GRE作者 (erichyu)時間10年前 (2015/06/03 03:20), 編輯推噓1(105)
留言6則, 2人參與, 最新討論串1/1
Two counterfeit coins of equal weight are mixed with 8 identical genuine coins. The weight of each of the counterfeit coins is different from the weight of each of the genuine coins. A pair of coins is selecd at random without replacement from the 10 coins. A second pair is selected at random without replacement from the remaining 8 coins. The combind weight of the first pair is equal to the combined weight of the second pair. What is the probability that all 4 selected coins are genuin? (A) 7/11 (B) 9/13 (C) 11/15 (D) 15/19 (E) 15/16 此題主要考條件機率,關鍵句在 The combind weight of the first pair is equal to the combined weight of the second pair. 兩組取得的錢幣重量在一樣的條件下,兩組(4個錢幣)都是真幣的 機率為多少? 兩組前後取得4個錢幣重量均相同情形有兩種: (1)兩組前後4個均為真幣機率:8C4/10C4=(8/10)*(7/9)*(6/8)*(5/7)=1/3 (2)第一組中一真一偽,第二組中也是一真一偽; 其機率:[(8C1*2C1)/10C2]*[(7C1*1C1)/8C2]=(8/10)*(2/9)*(1/8)*(7/7)*4=4/45 題目所求:兩組重量相同情況下,四個錢幣均為真幣的機率=(1/3)/(4/45+1/3)=15/19--- 即為答案。 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 59.115.241.197 ※ 文章網址: https://www.ptt.cc/bbs/GRE/M.1433272810.A.F96.html

06/03 07:23, , 1F
發現我題意離解錯誤
06/03 07:23, 1F

06/03 07:24, , 2F
已哭
06/03 07:24, 2F

06/03 08:05, , 3F
我是覺得算的時候直接拿(兩組一真ㄧ偽)除以(兩
06/03 08:05, 3F

06/03 08:05, , 4F
組一真一偽+兩組兩真)就好了 基本上兩個的分母都是
06/03 08:05, 4F

06/03 08:05, , 5F
一樣(即10個先任取2個再乘上剩下8個任取2個) 如
06/03 08:05, 5F

06/03 08:05, , 6F
此可省下計算時間
06/03 08:05, 6F
文章代碼(AID): #1LRW7g-M (GRE)